3.31 \(\int \frac{A+C \cos ^2(c+d x)}{\sqrt{b \sec (c+d x)}} \, dx\)

Optimal. Leaf size=77 \[ \frac{2 (5 A+3 C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}}+\frac{2 b^2 C \tan (c+d x)}{5 d (b \sec (c+d x))^{5/2}} \]

[Out]

(2*(5*A + 3*C)*EllipticE[(c + d*x)/2, 2])/(5*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*b^2*C*Tan[c + d*x
])/(5*d*(b*Sec[c + d*x])^(5/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0991752, antiderivative size = 77, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {3238, 4045, 3771, 2639} \[ \frac{2 (5 A+3 C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}}+\frac{2 b^2 C \tan (c+d x)}{5 d (b \sec (c+d x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(A + C*Cos[c + d*x]^2)/Sqrt[b*Sec[c + d*x]],x]

[Out]

(2*(5*A + 3*C)*EllipticE[(c + d*x)/2, 2])/(5*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*b^2*C*Tan[c + d*x
])/(5*d*(b*Sec[c + d*x])^(5/2))

Rule 3238

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 4045

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e
 + f*x]*(b*Csc[e + f*x])^m)/(f*m), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{A+C \cos ^2(c+d x)}{\sqrt{b \sec (c+d x)}} \, dx &=b^2 \int \frac{C+A \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx\\ &=\frac{2 b^2 C \tan (c+d x)}{5 d (b \sec (c+d x))^{5/2}}+\frac{1}{5} (5 A+3 C) \int \frac{1}{\sqrt{b \sec (c+d x)}} \, dx\\ &=\frac{2 b^2 C \tan (c+d x)}{5 d (b \sec (c+d x))^{5/2}}+\frac{(5 A+3 C) \int \sqrt{\cos (c+d x)} \, dx}{5 \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}}\\ &=\frac{2 (5 A+3 C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}}+\frac{2 b^2 C \tan (c+d x)}{5 d (b \sec (c+d x))^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.231961, size = 61, normalized size = 0.79 \[ \frac{\frac{4 (5 A+3 C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{\sqrt{\cos (c+d x)}}+2 C \sin (2 (c+d x))}{10 d \sqrt{b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + C*Cos[c + d*x]^2)/Sqrt[b*Sec[c + d*x]],x]

[Out]

((4*(5*A + 3*C)*EllipticE[(c + d*x)/2, 2])/Sqrt[Cos[c + d*x]] + 2*C*Sin[2*(c + d*x)])/(10*d*Sqrt[b*Sec[c + d*x
]])

________________________________________________________________________________________

Maple [C]  time = 0.592, size = 608, normalized size = 7.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)/(b*sec(d*x+c))^(1/2),x)

[Out]

-2/5/d*(5*I*A*cos(d*x+c)*sin(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticE(I*(-1
+cos(d*x+c))/sin(d*x+c),I)-5*I*A*cos(d*x+c)*sin(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1
/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)+3*I*C*sin(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x
+c)))^(1/2)*cos(d*x+c)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)-3*I*C*cos(d*x+c)*sin(d*x+c)*(1/(1+cos(d*x+c))
)^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)+5*I*A*(1/(1+cos(d*x+c)))^(
1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)-5*I*A*sin(d*x+c)*(
1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)+3*I*C*sin(
d*x+c)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)-3*
I*C*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+
c),I)+C*cos(d*x+c)^4+5*A*cos(d*x+c)^2+2*C*cos(d*x+c)^2-5*A*cos(d*x+c)-3*C*cos(d*x+c))*(b/cos(d*x+c))^(1/2)/b/s
in(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \cos \left (d x + c\right )^{2} + A}{\sqrt{b \sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/(b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)/sqrt(b*sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt{b \sec \left (d x + c\right )}}{b \sec \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/(b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + A)*sqrt(b*sec(d*x + c))/(b*sec(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{A + C \cos ^{2}{\left (c + d x \right )}}{\sqrt{b \sec{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)/(b*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + C*cos(c + d*x)**2)/sqrt(b*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \cos \left (d x + c\right )^{2} + A}{\sqrt{b \sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/(b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)/sqrt(b*sec(d*x + c)), x)